On the Jacobsthal sum $\phi_9(a)$ and the related sum $\psi_9(a)$.
نویسندگان
چکیده
منابع مشابه
On the sum of Pell and Jacobsthal numbers by matrix method
In this paper, we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph. We investigate relations between permanents and determinants of these upper Hessenberg matrices, and sum formulas of the well-known Pell and Jacobsthal sequences. Finally, we present two Maple 13 procedures in order to calculate permanents of t...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملon the sum of pell and jacobsthal numbers by matrix method
in this paper, we define two $n$-square upper hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph. we investigate relations between permanents and determinants of these upper hessenberg matrices, and sum formulas of the well-known pell and jacobsthal sequences. finally, we present two maple 13 procedures in order to calculate permanents of t...
متن کاملOn trees and the multiplicative sum Zagreb index
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
متن کاملSome new bounds on the general sum--connectivity index
Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1983
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12026